A Normalized Urban Areas Composite Index (NUACI) Based on Combination of DMSP-OLS and MODIS for Mapping Impervious Surface Area
نویسندگان
چکیده
Mapping Impervious Surface Area (ISA) at regional and global scales has attracted increasing interest. DMSP-OLS nighttime light (NTL) data have proven to be successful for mapping urban land in large areas. However, the well-documented issues of pixel blooming and saturation limit the ability of DMSP-OLS data to provide accurate urban information. In this paper, a multi-source composition index is proposed to overcome the limitations of extracting urban land using only the NTL data. We combined three data sources (i.e., DMSP-OLS, MODSI EVI and NDWI) to generate a new index called the Normalized Urban Areas Composite Index (NUACI). This index aims to quickly map impervious surface area at regional and global scales. Experimental results indicate that NUACI has the ability to reduce the pixel saturation of NTL and eliminate the blooming effect. With the reference data derived from Landsat TM/ETM+, regression models based on normalized DMSP-OLS, Human Settlement Index (HSI), vegetation adjusted NTL urban index (VANUI), and NUACI are then established to estimate ISA. Our assessments reveal that the NUACI-based regression model yields the highest performance. The NUACI-based regression models were then used to map ISA for China for the years 2000, 2005 and 2010 (Free download link for the ISA products can be found at the end of this paper).
منابع مشابه
Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data
Impervious surface area (ISA) is an important parameter for many studies such as urban climate, urban environmental change, and air pollution; however, mapping ISA at the regional or global scale is still challenging due to the complexity of impervious surface features. The Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) data have been used for ISA mapping, but...
متن کاملRegional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification
Stable night-time light data from the Defense Meteorological Satellite Program (DMSP) Operational Line-scan System (OLS) provide a unique proxy for anthropogenic development. This paper presents a regional urban extent extraction method using a one-class classifier and combinations of DMSP/OLS stable night-time light (NTL) data, MODIS normalized difference vegetation index (NDVI) data, and land...
متن کاملRegional urban area extraction using DMSP-OLS data and MODIS data
Stable night lights data from Defense Meteorological Satellite Program (DMSP) Operational Line-scan System (OLS) provide a unique proxy for anthropogenic development. This paper proposed two new methods of extracting regional urban extents using DMSP-OLS data, MODIS NDVI data and Land Surface Temperature (LST) data. MODIS NDVI data were used to reduce the over-glow effect, since urban areas gen...
متن کاملThe Integrated Use of DMSP-OLS Nighttime Light and MODIS Data for Monitoring Large-Scale Impervious Surface Dynamics: A Case Study in the Yangtze River Delta
The timely and reliable estimation of imperviousness is essential for the scientific understanding of human-Earth interactions. Due to the unique capacity of capturing artificial light luminosity and long-term data records, the Defense Meteorological Satellite Program (DMSP)’s Operational Line-scan System (OLS) nighttime light (NTL) imagery offers an appealing opportunity for continuously chara...
متن کاملA New Urban Index for Expressing Inner-City Patterns Based on MODIS LST and EVI Regulated DMSP/OLS NTL
With the rapid pace of urban expansion, comprehensively understanding urban spatial patterns, built environments, green-spaces distributions, demographic distributions, and economic activities becomes more meaningful. Night Time Lights (NTL) images acquired through the Operational Linescan System of the US Defense Meteorological Satellite Program (DMSP/OLS NTL) have long been utilized to monito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015